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The lattice Boltzmann model is a simplified kinetic method based on the particle
distribution function. We use this method to simulate problems in MEMS, in
which the velocity slip near the wall plays an important role. It is demonstrated
that the lattice Boltzmann method can capture the fundamental behaviors in
micro-channel flow, including velocity slip, nonlinear pressure drop along the
channel and mass flow rate variation with Knudsen number. The Knudsen
number dependence of the position of the vortex center and the pressure
contour in micro-cavity flows is also demonstrated.
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1. INTRODUCTION

The development of technologies in Micro-electro-mechanical systems
(MEMS) has motivated the study of fluid flows in devices with micro-scale
geometries, such as micro-channel and micro-cavity flows. (1) In these flows,
the molecular mean free path of the fluid molecules could be the same
order as the typical geometric dimension of the device and the continuum
hypothesis which is the fundamental for the Navier–Stokes equation breaks
down. An important feature in these flows is the emergence of a slip veloc-
ity at the flow boundary, which strongly affects the mass and heat transfer
in the system. In micro-channel experiments, it has been observed that the



measured mass flow rate is higher than that based on a non-slip boundary
condition. (2) The Knudsen number, Kn=l/H, can be used to identify the
influence of the effects of the mean free path on these flows, where l is the
mean free path of the molecules and H is a typical dimension of the flow
domain. It has been pointed out (3) that for a system withKn < 0.001, the fluid
flow can be treated as continuum. For Kn > 10 the system can be considered
as a free-molecular flow. The fluid flow for 0.001 < Kn < 10, which often
appears in the MEMS, can not be treated as a continuum flow or a free-
molecular flow. Traditional kinetic methods, such as molecular dynamics
simulations (4) and the continuum Boltzmann equation, could be used to
describe these flows. But these methods are more complicated than schemes
usually used for continuum hydrodynamic equations. The solution of the
Navier–Stokes equation including the velocity-slip boundary condition with
a variable parameter has also been used to simulate micro-channel flows. (5)

In the past ten years, the lattice Boltzmann method (LBM) (6) has
emerged as an alternative numerical technique for simulating fluid flows.
This method solves a simplified Boltzmann equation on a regular lattice.
The solution of the lattice Boltzmann equation converges to the Navier–
Stokes solution in the continuum limit (small Knudsen number). In addi-
tion, since the lattice Boltzmann method is intrinsically kinetic, it can be
also used to simulate some fluid flows with high Knudsen numbers,
including fluid flows in very small MEMS.

2. A LATTICE BOLTZMANN MODEL FOR MICRO-FLOWS

To demonstrate the utility of LBM, we use the D2Q9 model (7) with
three speeds and nine velocities on a two-dimensional square lattice. The
velocities, ci, include eight moving velocities along the links of the square
lattice and a zero velocity for the rest particle. They are: (±1, 0), (0, ±1),
(±1, ±1), (0, 0). Let fi(x, t) be the distribution functions at x, t with
velocity ci. The lattice Boltzmann equation with the BGK collision approxi-
mation(7, 8) can be written as

fi(x+ci dt, t+dt)−fi(x, t)=−
fi−f

eq
i

y
(1)

where feqi (i=0, 1,..., 8) is the equilibrium distribution function and y is
the relaxation time. We have assumed that the spatial separation of the
lattice is dx and the time step is dt. A suitable equilibrium distribution is: (7)

feqi =tir 51+
ciaua
c2s
+
(ciacib−c

2
sdab)

2c4s
uaub 6 (2)
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Here cs=1/`3 is the sound speed, t0=4/9, t1=t2=t3=t4=1/9 and
t5=t6=t7=t8=1/36. The Greek subscripts a and b denote the spatial
directions in Cartesian coordinates. The density r and the fluid velocity v
are defined by r=; i fi, rv=; i cifi. In previous lattice-BGK models,
y was chosen to be a constant. This is applicable only for nearly-incom-
pressible fluids. In micro-flows, the local density variation is still relatively
small, but the total density changes, for instance the density difference
between the inlet and exit of a very long channel could be quite large. To
include the dependence of viscosity on density we replace y in Eq. (1) by yŒ:

yŒ=
1
2
+
1
r
1y−1

2
2 (3)

As shown later in Eq. (7), this makes the dynamic viscosity m=rn constant
which is required for most realistic fluids. Using the Chapman–Enskog
multi-scale expansion technique, (6) we obtain the following Navier–Stokes
equations in the limit of long wavelength, low frequency and small Mach
number:

“tr+“a(rua)=0 (4)

“t(rua)+“b(ruaub)=−“aP+“bpab (5)

P=c2sr, pab=n(“a(rub)+“b(rua)) (6)

where

n=c2s (2y−1)/(2r) (7)

is the kinematic viscosity.
In classical kinetic theory, the viscosity n for a hard sphere gas is linearly

proportional to the mean free path. Similarly, we define the mean free path l
in the LBM as: a(y−0.5)/r, where a is a constant which will be determined
by comparing simulation results with experiments in the following micro-
channel flow simulation. The factor 0.5 comes from the finite difference
scheme used in the lattice Boltzmann discretization for the discrete Boltz-
mann equation. (6) Therefore, we have the relation between the Knudsen
number and the relaxation parameter:

Kn=
a(y−0.5)
rH
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3. SIMULATION RESULTS AND DISCUSSION

Our first numerical example is the micro-channel flow (2) where the
flow is contained between two parallel plates separated by a distance H
and driven by the pressure difference between the inlet pressure, Pi, and the
exit pressure, Pe. The channel length in the longitudinal direction is L.
We take L=1000, H=10 (lattice units) in our simulations, satisfying
L/H± 1 consistent with most experimental conditions. The bounce-back
wall boundary condition is used for the particle distribution functions at
the top and bottom plates, i.e., when a particle distribution moves to a
wall, the particle distribution scatters back to the fluid node opposite to its
incoming direction. The bounce-back boundary condition of particle dis-
tribution will result in a non-slip boundary condition of average velocity in
the continuous limit (Kn ° 1). However, when Kn is not very small, the
continuous assumption does not hold, resulting in a mean slip velocity on
wall boundary. This is because of the kinetic nature of the lattice-Boltz-
mann method. In our simulation, the solid wall is set between two mesh
layers. For example, when H=10, the y-coordinates of the fluid nodes are
y=0.5, 1.5,..., 9.5. A pressure boundary condition is used at the input and
the exit. The pressure boundary condition is set by extrapolation method (9)

in which the particle distribution functions in the input and the exit are
calculated based on the given pressures on these boundaries.
It is customary to define the slip velocity Vs for the micro-channel

using the following formula:

u(y)=u0(Y−Y2+Vs) (8)

where u(y) is the x-direction velocity, u0 and Vs can be obtained by fitting
the numerical results to Eq. (8) using the least square method. This defini-
tion of the slip velocity is consistent with others. (2, 5) The profiles of nor-
malized velocity, V=u(y)/u0, at the exit of the channel are shown in
Fig. 1 for various Knudsen numbers which are defined based on the width
of the channel when the pressure ratio a=Pi/Pe=2. The velocity distri-
butions are well fitted by Eq. (8), demonstrating that high Knudsen flows
can be well approximated by parabolic velocity distributions with slip
boundary velocity. It is evident that the slip velocity increases as a function
of Knudsen number. In Fig. 2, we plot the slip velocity Vs and the nor-
malized mass flow rate Mf=M/M0, as functions of Knudsen number.
The normalization factor,M0=

h3Pe
24nL (a

2−1), is the mass flow rate when the
slip velocity is zero. To calculate the Knudsen number we have chosen
a=0.388 to best match the simulated mass flow rate with experiments (see
the theoretical curve in Fig. 5). In general, the parameter a should depend
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Fig. 1. The profiles of normalized velocity V=u/u0 at the exit of a micro-channel flow for
various Knudsen number Kn.

on the interaction force between fluid and wall and should not depend on
flow conditions. Using a least square fit to the data in Fig. 2, we obtain the
dependence of the slip velocity on Knudsen number:

Vs=8.7K
2
n (9)

The slip phenomena can also be discussed by using slip length z, which is
defined as the distance between the wall and the position at which the
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Fig. 2. The slip velocity and the normalized mass flow rate at the exit of a micro-channel
flow as functions of Kn for Pi/Pe=2. The ‘‘+’’ and ‘‘× ’’ are LBM numerical results. The
dashed and dotted lines are for theoretical predications in Eqs. (9) and (12), respectively.
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extrapolated fluid velocity reaches zero. The slip length can be obtained by
letting uy=0 in Eq. (8), leading to:

z=
(1+4Vs)

1
2−1

2
(10)

As shown in Fig. 3 this result agrees well with the result obtained by a
molecular dynamics approach. In theMD simulation the fluid was composed
of Lennard–Jones atoms with the potential V(r)=4[E[(rs)

−12−(rs)
−6] and

the wall-fluid interactions were modeled by a modified Lennard–Jones
potential V(r)=16[E[(rs)

−12−A(rs)
−6] with A=3

8 .
(10) In this comparison we

have assumed the mean free path l= 1
ns3 in order to connect the Knudsen

number Kn to the normalized density ns3 in the molecular dynamics
simulation.
If we assume that the Navier–Stokes equations are valid for the micro-

flows except that (i) the traditional non-slip velocity condition on the wall
is replaced by the slip boundary condition Vs using Eq. (9); (ii) the y-direc-
tion velocity is zero and the x-direction velocity is u0(x)(Y−Y2+Vs(x));
and (iii) all the non-linearities in Eqs. (4) and (5) are negligible, then an
analytic solution of the pressure distribution along the channel can be
obtained:

(P2−P2e)+12P
2
eVs ln(P/Pe)=MfP

2
e(a

2−1)(1−X) (11)
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Fig. 3. The slip lengthes z obtained by molecular dynamics approach (MD) and lattice-
Boltzmann (LB) simulation as functions of normalized density ns3. The l=1

n s
3 is used to link

Knudsen number to the normalized density ns3 in the molecular dynamics simulation.
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where X=x/L and the normalized mass flow rate is

Mf=1+12Vs(Kn)
ln(a)
a2−1

(12)

For the inlet-exit pressure rate a=2, the above formula becomes Mf=
1+24.1K2n, which agrees well with the numerical results in Fig. 2.
In laminar Poiseuille flows, one usually assumes that the density

variation along the channel is very small, and the pressure drop along the
channel is nearly linear. In micro-channel flow, however, the ratio between
the length and the width is much larger and the pressure drop is not linear.
If there is no velocity slip at the walls (Vs=0), according to Eq. (11), (2, 5) the
pressure along the channel has the following dependence on the dimen-
sionless coordinate:

P2=P2e[1+(a
2−1)(1−X)] (13)

If the velocity at the boundaries is allowed to slip, the pressure profile
along the channel will depend on the Knudsen number. In Fig. 4 we
present the LBM simulation results for the normalized pressure deviation
from a linear pressure profile, (P−Pl)/Pe, as functions of X at several
Knudsen numbers, where Pl=Pe+(Pi−Pe)(1−X). It is seen that when
Kn [ 0.2, (P−Pl)/Pe is a positive nonlinear function of X. This agrees
with the results in ref. 5 using an engineering model. For Kn \ 0.2, the
LBM simulation shows that (P−Pl)/Pe becomes negative, which is directly
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Fig. 4. The deviations from linear pressure profile for a=Pi/Pe=2. The top and bottom
lines are the analytical results from Eq. (13) for Kn=0 and Eq. (14) for Kn ± 1 respectively.
The other curves are LBM numerical results for the Knudsen numbers indicated.
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linked to the fact that the slip velocity depends on the square of Kn in the
LBM. For large Kn, the pressure can be derived from Eq. (11):

P=Pe[a (1−X)] (14)

The negative deviation from a linear pressure distribution has not been
experimentally observed before and it would be interesting to verify
experimentally.
In Fig. 5 the mass flow rates as functions of the pressure ratio a when

Kn=0.165 are shown for our theory, the experimental work, (2) the engi-
neering model (5) and the LBM simulation. Our theory and the LBM simu-
lation agree well with the experimental measurements. For large pressure
ratios (a \ 1.8), the LBM agrees reasonably well with Beskok et al. (5) But
for smaller pressure ratios, the difference increases because the dependence
of the slip velocity on Kn is different among LBM and ref. 5. Beskok et al.
have used a slip velocity model which includes linear and quadratical terms
of Kn. But the linear term plays the dominating effect. Figure 5 has also
included the two results from ref. 5. The upper curve uses the slip velocity
which depends both linearly and quadratically on Kn. We expect that a new
slip velocity formula in Eq. (9) and the Navier–Stokes equation should lead
to similar results as shown in our LBM simulation.
Our second LBM numerical simulation describes two-dimensional

micro-cavity flow. (11) The cavity size is Lx=Ly=40 (lattice units). The
upper wall moves with a constant velocity, v0, from left to right. The veloc-
ity boundary condition is specified using an extrapolation method. The
equilibrium distributions are calculated assuming that the upper wall nodes
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Fig. 5. The normalized mass flow rate as a function of the pressure ratio for Kn=0.165.
The solid line is for Eq. (12).
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Fig. 6. Streamlines for two Knudsen numbers in the cavity flow. The upper wall of the
cavity moves at a constant velocity v0 and other three walls are still.

move at a constant velocity, v0. The distributions at the nodes that are just
outside of the fluid are calculated using linear extrapolations. The other
three walls are at rest. The boundary are set on nodes where the bounce-
back boundary conditions are used. To see the dependence of flow charac-
teristics on the Knudsen number in our simulations, we fixed the Reynolds
number, Re=

v0Lx
n =2.4×10

−4 and require Mach numberMa=
v0
cs
[ 10−3.

In Fig. 6, we show the streamlines at two different Knudsen numbers.
In Fig. 7, we show the vertical positions of the vortex center and the nor-
malized mass flow rate between the bottom and the vortex center as func-
tions of Kn. The normalized factor is rLxv0. It can be seen that at small
Knudsen numbers the vortex center moves downward and the mass flow
rate increases with increasing Kn. On contrast, at high Knudsen numbers
the vortex center moves upward and the mass flow rate decreases with
Knudsen number, which is attributed to the fact that the slip velocity on
the upper wall causes momentum transfer less efficient. It has been shown
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Fig. 7. The y-coordinate of the vortex center (square symbols) and the normalized mass
flow rate (solid circles) between the bottom and the vortex center as a function of Kn.
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Fig. 8. The pressure contours at two Knudsen numbers as in Fig. 5.

in ref. 12 that the center of the vortex moves downward when the Reynolds
number increases for very small Kn. Figure 8 shows the pressure contours
for the same parameters as in Fig. 6. The pressure is calculated according
to Eq. (6). Totally different pressure structures are observed in these two
cases. When the Knudsen number is small, the continuum assumption is
valid and the pressure contours are almost circles with centers at the upper
left or the upper right corners. On the other hand, due to the slip velocity
on the walls, the pressure contours become nearly straight lines for higher
Knudsen numbers.
In this paper, we have used the lattice Boltzmann method to simulate

the micro-channel and micro-cavity flows. Because the LBM is a kinetic
method based on the particle distribution function, it can be used to study
the flow dependence on Knudsen number, including the slip velocity, the
nonlinear pressure drop in micro-channel and the variation of the vortex
center in the micro-cavity. By comparing our simulation results with
experiments we conclude that a quadratic dependence of slip velocity on
Knudsen number is a better approximation. We have also discovered in
high Knudsen number channel flow that negative pressure deviations from
a linear pressure drop can occur, which should be verified by experiments.
The LBM is especially appealing as a simulation tool for problems in
MEMS due to its model simplicity and parallel efficiency.
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